SPECIFICATION FOR APPROVAL

COMMODITY: 1.10mm Height 0805 Package

Infrared Chip LED

DEVICE NUMBER: DL- PCB0805SIRC-1SIR120

CUSTOMER APPROVEDBY	DATE

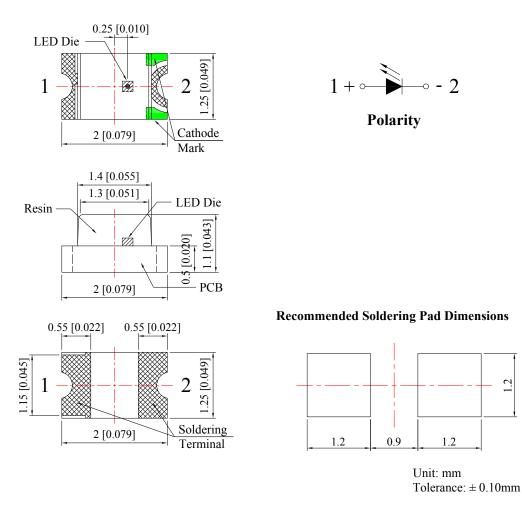
Double Light

Features:

- Package in 8mm tape on 7" diameter reel. 1.
- Compatible with automatic placement equipment. 2.
- 3. Compatible with infrared and vapor phase reflow solder process.
- 4. Mono-color type.
- The product itself will remain within RoHS compliant Version. 5.

Descriptions:

- The PCB1206SIR is an infrared emitting diode in miniature SMD package which is molded in a water clear plastic with 1. flat top view lens.
- The device is spectrally matched with photodiode and phototransistor. 2.


Applications: ٠

- PCB mounted infrared sensor. 1.
- Infrared emitting for miniature light barrier. 2.
- 3. Floppy disk drive.
- 4. Optoelectronic switch.
- 5. Smoke detector.

Rev No.: V.2

Date: 2008-5-18

Package dimensions:

1. Soldering terminal may shift in x, y direction.

2. Polarity referring onto the cathode mark is reversed on the UR/HR/SR.

Part No.	Chip Material	Lens Color	Source Color
DL-PCB0805SIRC-1SIR120	GaAlAs	Water Clear	Infrared

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25mm (0.01") unless otherwise specified.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

♦ Absolute Maximum Ratings at Ta=25 °C

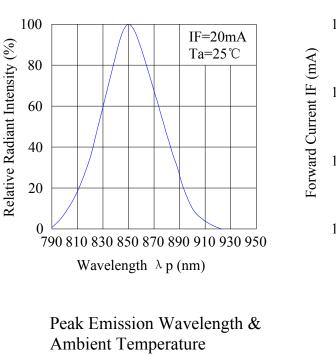
Parameters	Symbol	Max.	Unit
Power Dissipation	PD	100	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	IFP	1.00	A
Forward Current	IF	50	mA
Reverse Voltage	VR	5 V	
Operating Temperature Range	Topr	- 25 ℃ t	o +80°C
Storage Temperature Range	Tstg	-40℃ t	o +85 °C
Lead Soldering Temperature	Tsld	260 ℃ for	5 Seconds

► Electrical Optical Characteristics at Ta=25 °C

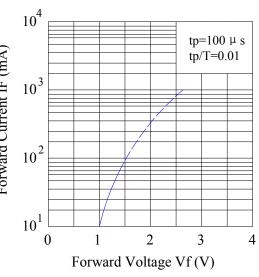
Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
		1.00	1.60			IF=20mA
Radiant Intensity *	Ee		3.00		mW/sr	IF=100mA (Pulse Width≤100µs, Duty≤1%)
Viewing Angle *	20 1/2		140		Deg	IF=20mA (Note 2)
Peak Emission Wavelength	λр		850		nm	IF=20mA (Note 3)
Spectral Bandwidth	Δλ		45		nm	IF=20mA
	VF	1.00	1.45	1.65	v	IF=20mA
Forward Voltage			1.60	1.85		IF=100mA (Pulse Width≤100µs, Duty≤1%)
Reverse Current	IR			10	μΑ	V _R =5V

Notes:

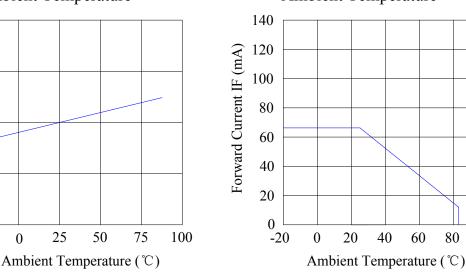
1. Luminous (Radiant) Intensity Measurement allowance is \pm 10%.


2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

3. The dominant wavelength (λp) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.


Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)


Spectral Distribution

Forward Current & Forward Voltage

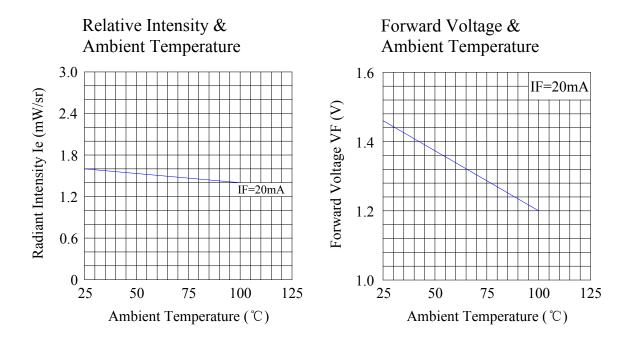
Forward Current & Ambient Temperature

Peak Emission Wavelength Ap (nm)

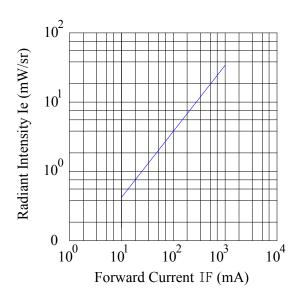
890

870

850

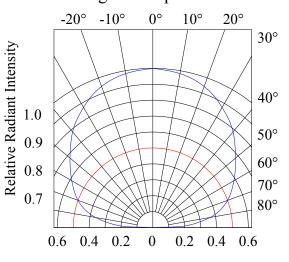

830

810

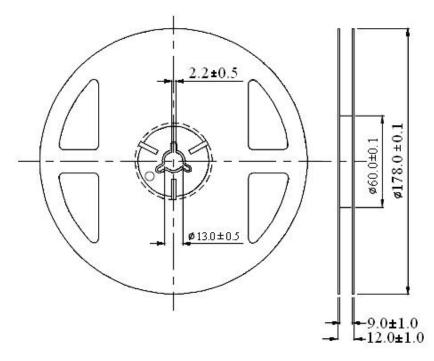

-25

80

100

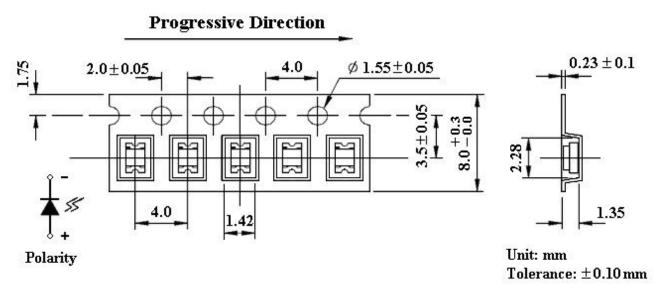


Relative Intensity & Forward Current



Rev No.: V.2

Relative Radiant Intensity & Angular Displacement


• Reel Dimensions:

Unit: mm Tolerance: ± 0.25 mm

• Carrier Tape Dimensions:

Loaded quantity 3000 PCS per reel.

Spec No.: DL-PCB0805SIRC-1SIR120Rev No.: V.210HONGKONG DOUBLE LIGHT ELECTRONICS TECHNOLOGY CO.,LIMITED

• Reliability Test

Classification	Test Item	Reference Standard	Test Conditions	Result	
	Operation Life	MIL-STD-750:1026	Connect with a power If=20mA		
		MIL-STD-883:1005	Ta=Under room temperature	0/20	
		JIS-C-7021 :B-1	Test time=1,000hrs		
	High Temperature	MIL-STD-202:103B	Ta=+65℃±5℃		
	High Humidity	JIS-C-7021 :B-11	RH=90%-95%	0/20	
	Storage		Test time=240hrs		
Endurance Test	High Temperature	MIL-STD-883:1008	High Ta=85℃±5℃		
	Storage	JIS-C-7021 :B-10	Test time=1,000hrs 0/20	0/20	
	Low Temperature	JIS-C-7021 :B-12	Low Ta=-35 ீட±5 ீட	0/20	
	Storage		Test time=1,000hrs		
	Temperature	MIL-STD-202:107D	-35℃ ~ +25℃ ~ +85℃ ~ +25℃		
	Cycling	MIL-STD-750:1051	60min 20min 60min 20min	0/20	
		MIL-STD-883:1010	Test Time=5cycle		
		JIS-C-7021 :A-4			
Environmental	Thermal Shock MIL-STD-202:107D 35℃±5℃ ~+85℃±5℃		35℃±5℃~+85℃±5℃	0/20	
Test		MIL-STD-750:1051	20min 20min	0/20	
		MIL-STD-883:1011	Test Time=10cycle		
	Solder Resistance	MIL-STD-202:201A	Preheating:		
		MIL-STD-750:2031	140 $^{\circ}$ C-160 $^{\circ}$ C, within 2 minutes.	0/20	
		JIS-C-7021 :A-1	Operation heating: 235℃ (Max.), within 10seconds (Max.)		

• Judgment criteria of failure for the reliability

Measuring items	Symbol	Measuring conditions	Judgment criteria for failure
Forward voltage	VF (V)	IF=20mA	Over Ux1.2
Reverse current	IR(uA)	VR=5V	Over Ux2
Luminous intensity	lv (mcd)	IF=20mA	Below SX0.5

Page: 8 OF

Date: 2008-5-18

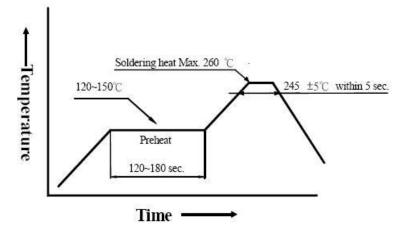
Double Light

Notes:

- 1. U means the upper limit of specified characteristics. S means initial value.
- 2. Measurement shall be taken between 2 hours and after the test pieces have been returned to normal ambient conditions after completion of each test.

• Soldering:

1. Manual of Soldering

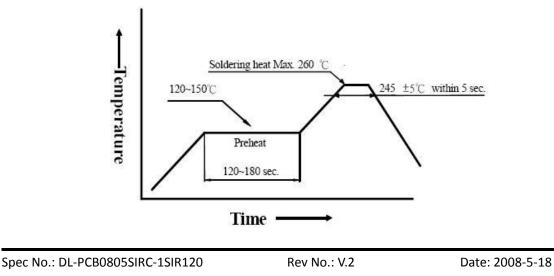

The temperature of the iron tip should not be higher than 300 $^\circ$ C (572 $^\circ$ F) and Soldering within 3 seconds per solder-land is to be observed.

2. Reflow Soldering

Preheating: 140° C~ 160° C ± 5° C, within 2 minutes.

Operation heating: 235 $^\circ\! {\rm C}$ (Max.) within 10 seconds (Max)

Gradual Cooling (Avoid quenching).



3. DIP soldering (Wave Soldering):

Preheating: 120° C~150°C, within 120~180 sec.

Operation heating: 245 $^\circ\!\mathrm{C}\pm\!5\,^\circ\!\mathrm{C}$ within 5 sec.260 $^\circ\!\mathrm{C}$ (Max)

Gradual Cooling (Avoid quenching).

• Handling :

Care must be taken not to cause to the epoxy resin portion of LEDs while it is exposed to high temperature. Care must be taken not rub the epoxy resin portion of LEDs with hard or sharp article such as the sand blast and the metal hook.

• Notes for designing:

Care must be taken to provide the current limiting resistor in the circuit so as to drive the LEDs within the rated figures. Also, caution should be taken not to overload LEDs with instantaneous voltage at the turning ON and OFF of the circuit.

When using the pulse drive care must be taken to keep the average current within the rated figures. Also, the circuit should be designed so as be subjected to reverse voltage when turning off the LEDs.

Storage:

In order to avoid the absorption of moisture, it is recommended to solder LEDs as soon as possible after unpacking the sealed envelope.

If the envelope is still packed, to store it in the environment as following:

- 1) Temperature : 5 $^\circ C$ -30 $^\circ C$ (41 $^\circ F$), Humidity : RH 60 $^{\%}$ Max.
- 2) After this bag is opened, devices that will be applied to infrared reflow, vapor-phase reflow, or equivalent soldering process must be:
 - a) Completed within 24 hours.
 - b) Stored at less than 30% RH.
- 3) Devices require baking before mounting, if (2) a or (2) b is not met.
- 4) If baking is required, devices must be baked under below conditions: 12 hours at $60^{\circ}C \pm 3^{\circ}C$.

• Package and Label of Products:

Products are packed in one bag of 500pcs (one taping reel) and a label is attached on each bag.